

The Need for a Virtual Tumour: Cancer is a Multi-Scale Phenomenon

Figure A: Electron micrograph of a single breast cancer cell. *Source: National Cancer Institute.*

10 - 30 µm across

Figure B: Avascular multicellular tumour. Source: J. Folkman, M. Hochberg, J. Exper. Medicine, 138: 745-753, 1973.

10⁷ cells 1 mm across

Figure C: Angiogram of a patient with a large vascular brain tumour. Arrows and arrowhead point to prominent blood vessels feeding this tumour. *Source: Standford Hospital.*

10¹¹-10¹² cells 5-20 cm across

Figure D: Whole-body 18-FDG (fluorodeoxyglucose) imaging of a patient with small cell carcinoma of the lung. *Source: Unité d'Imagerie Moléculaire et de Radiothérapie Expérimentale Cliniques Universitaires Saint-Luc Bruxelles.*

Cancer is a multi-scale phenomenon, hence it must be modelled on many levels

Physiomics' Virtual Tumour focusses on key tumour dynamics

- Tumour growth / spatial aspect
- Individual cell / synchronisation
- Predict drug effects on tumour
- Does not try to replicate the full complexity of biological systems
- Agent-based model, each cell (agent) contains a different instance of the model
- Tumours contain a heterogeneous cell population

\bigcirc

Preclinical

- Predicts the change in mean tumour volume over time
 - Over 35 preclinical studies have confirmed the predictive capability of the model
- The model describes the growth of a single tumour
- Clinical
 - Predict the change in mean tumour diameter over time for all lesions
 - From the preclinical work we have learnt that the mean behaviour is predictable

Moving from preclinical to clinical setting and vice versa

- Current pharma approach involves merely matching PK between xenograft and man. We also take into consideration the different tumour growth dynamics.
- Adjust certain key parameters we have identified as important for reflecting the different tumour growth rates between xenograft and man.

5

Preclinical Virtual Tumour

proprietary cell population model

6

 Literature Data across numerous tumour types

- Growth and decay rates of clinical tumours.
- Variability in durations of cell-cycle phases.

Key patient data

- Human PK for drug of interest. Usually from a phase I study.
- How quickly a lesion shrinks. From clinical trials on other drugs in the same indication.

Virtual Tumour Clinical

proprietary cell population model

Virtual Tumour Clinical Development

 \bigcirc

 Biomedical Catalyst funding award from the UK Technology Strategy Board (July 2013- March 2014)

Technology Strategy Board Driving Innovation

- NIH collaboration within metastatic castrateresistant prostate cancer
- Oxford University clinical centre to look at three cancer types
- Advanced discussion with large pharma to provide large clinical data sets
- Early results suggest that the existing preclinical model architecture may be appropriate for making clinical predictions
- Large unmet need interest from almost every potential partner

Clinical to Preclinical (Back Translation) Metastatic Melanoma

PHYSI MICS

8

Clinical data

- 20 patients where each lesion was monitored over time
- Total number of evaluable lesions: 69
- ➡ FDA report contains a PK model

Preclinical data

- COLO 205 xenograft (colorectal cell line with BRAF V600 mutation) for which we have change in tumour volume for different doses of the drug
- Literature PK model
- Mechanism of action
 - B-Raf inhibitor
 - Drug is known to exert its anti-tumour effect through causing G1 arrest

- Step 1: Analyse clinical data using population analysis approach
- Step 2: Calibrate Virtual Tumour to the mean clinical signal
 - Clinical PK model sourced from literature
- Step 3: Switch clinical growth settings for preclinical growth settings and calibrate preclinical model to control growth
- Step 4: Predict preclinical monotherapy effects
 - Preclinical PK model sourced from literature
- Step 5: Compare prediction with actual results

Evolutionary dynamics of cancer in response to targeted combination therapy. eLife. DOI: 10.7554/eLife.00747.001.

11

Mouse drop-outs affect the mean behaviour at late time points

Focus on early dynamics as mice are usually sacrificed once tumour volumes reach a certain size

Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010. 467(7315): 596-599.

- Monotherapy predictions compare well with experimental observations
 - Left panel 6 mg/kg QD, right panel 20 mg/kg QD

Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010. 467(7315): 596-599.

- Monotherapy predictions compare well with experimental observations
 - Left panel 6 mg/kg QD, right panel 20 mg/kg QD
- This was a colorectal cancer xenograft (COLO 205) which had BRAF V600 mutation
 - Mutational background more important than tissue type? See later

Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010. 467(7315): 596-599

- Calibrated Virtual Tumour to monotherapy changes in individual clinical lesions
- Model prediction:
 - Captured the preclinical dynamics very well
- Successful back-translational validation
 - Predicted the effects reasonably well

We shall now look at a forward translational project in this disease area...

Preclinical to Clinical Metastatic Melanoma

PHYSIC MICS

ADVANCE:	Qualification of the translational capability of the Virtual Tumour
OBJECTIVE:	To determine whether our technology could accurately predict the mean change in tumour size over time in a phase II clinical study of docetaxel vs. docetaxel/selumetinib in BRAF WT metastatic melanoma
PARTNER:	Mark Middleton, Oxford ECMC
START POINT:	Single drug xenograft dose-response data, preclinical and clinical PK
DURATION :	6 weeks
OUTCOMES :	Correctly predicted mean change in tumour size over time in both arms of the study and provided schedule options to ameliorate toxicities

- AstraZeneca sponsored randomised phase II study: docetaxel/selumetinib v docetaxel
 - ➡ 40 patients in each arm
 - ~100 lesions in each arm
 - ➡ BRAF WT setting
- Selumetinib is a MEK inhibitor being investigated in numerous disease areas
 - Phase III combination with docetaxel currently ongoing in NSCLC
- Trametinib (GSK) MEK inhibitor was approved last year in the BRAF MUT setting
- Literature search was required for:
 - Preclinical xenograft and PK
 - ➡ Clinical PK

- Step 1: Calibrate Virtual Tumour to preclinical data for each agent
 - Literature PK and xenograft data sourced from literature
- Step 2: Switch preclinical growth settings for clinical growth settings
- Step 3: Predict the two-arm phase II trial
 - Clinical PK models sourced from literature
- Step 4: Population analysis of the clinical study
- **Step 5:** Compare prediction with actual result

Ŧ

- Replace preclinical growth settings with clinical growth settings
 - Baseline longest diameters are provided as initial inputs
- Replace preclinical PK with clinical PK and simulate predictions

- Perform a population analysis of the clinical data and overlay the results
- Accurate predictions for both arms of the study
 - ➡ Final Study Result: overall response rate (ORR) 32% Doc/Mek v 14% Doc (p = 0.059)

- Biostatistics view: bin the data according to three groups and calculate the mean and 95% confidence interval
- Accurate predictions for both arms of the study
 - ➡ Final Study Result: overall response rate (ORR) 32% Doc/Mek v 14% Doc (p = 0.059)

- Successfully predicted the results of the 2-arm clinical phase 2 trial using monotherapy preclinical efficacy data
 - Performed further predictions for Oxford's ECMC to look at different regimens e.g.
 - What happens if we alter the way Selumetinib is given in a day?
 - ➡ Legend:
 - Docetaxel (75 mg/m²) mean (red) and 95% C.I. (pink region)
 - Docetaxel (75 mg/m²)/Mek (75 mg BD) mean (blue) and 95% C.I. (light blue region)
 - Model predictions open circles and C.I.
 - Total daily dose is 150 mg
 - No difference between BD and TDS for the same total daily dose.

- Successfully predicted the mean change in lesion size for each arm of the phase II trial, using monotherapy preclinical efficacy data and clinical PK data
 - Performed further predictions for Oxford ECMC, exploring different dosing regimens and changing docetaxel for paclitaxel
- Virtual Tumour Clinical can provide significant cost-savings
 - accurate translation of preclinical efficacy reduces the number of clinical studies required to find optimal doses and schedules
- Virtual Tumour Clinical could reduce attrition rates
 - Optimized regimens can enhance efficacy, increasing the chance of clinical trial success

Dr Christophe Chassagnole: cchassagnole@physiomics-plc.com