

Development and validation of a quantitative systems pharmacology model for prediction of preclinical efficacy of PARP inhibitors rucaparib and talazoparib combined with the ATR inhibitor gartisertib (M4344)

Abstract Number: 5699

Claire C. Villette¹, Frances Brightman¹, <u>Nathalie Dupuy¹</u>, Astrid Zimmermann², Florianne Lignet², Frank T. Zenke³, Nadia Terranova⁴, Jayaprakasam Bolleddula³, Samer El Bawab^{2#}, Christophe Chassagnole¹

¹Physiomics Plc, Oxford, United Kingdom; ²the healthcare business of Merck KGaA, Darmstadt, Germany, ³EMD Serono, Billerica, MA, USA; ⁴Merck Institute of Pharmacometrics, Lausanne, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany

At the time the study was conducted

Disclosure Information

APRIL 14-19 • #AACR23

Nathalie Dupuy

Relevant financial relationships:

Employee of: Physiomics PLC

Grant/Research support: the healthcare business of Merck KGaA, Darmstadt, Germany (CrossRef Funder ID: 10.13039/100009945) contracted Physiomics to conduct the research reported in this presentation

Stockholder in: Physiomics PLC

Computational model to capture the dose-response of

APRIL 14-19 • #AACR23

agents targeting DDR

DDR. DNA damage response; DSB, double-strand break; SSB, single-strand break

Computational model to capture synthetic lethality

APRIL 14-19 • #AACR23

induced by agents targeting DDR

ATR, ataxia telangiectasia and Rad3-related; DDR, DNA damage response; DSB, double-strand break; PARP, poly (ADP-ribose) polymerase; SSB, single-strand break

Computational model to capture synthetic lethality

induced by agents targeting DDR

APRIL 14-19 • #AACR23

ATR, ataxia telangiectasia and Rad3-related; DDR, DNA damage response; DSB, double-strand break; PARP, poly (ADP-ribose) polymerase; SSB, single-strand break

preclinical tumor growth inhibition (TGI) data

APRIL 14-19 • #AACR23

Preclinical work conducted by the healthcare business of Merck KGaA, Darmstadt, Germany

PARP inhibitors: rucaparib, talazoparib; ATR inhibitor: gartisertib (M4344)¹

Mouse TNBC PDX tumor models with various DNA repair deficiencies show distinct response profiles

1. Jo, U et al. Mol Cancer Ther. 2021;20(8):1431-41

BRCAm, BRCA mutant; BRCAwt, BRCA wild-type; HRD, homologous recombination DNA-repair deficiency; PDX, patient-derived xenograft; TNBC, triple-negative breast cancer

Core model tracks cell populations

Model implements DNA damage accumulation leading

Endogenous

generation

to cell death

SSB damage

DSB damage

SSB REPAIR

DSB REPAIR

- Endogenous generation of DNA damage: SSB and DSB
- SSB converted into DSB
- DSB more deleterious than SSB
- Delayed cell death¹ => damage accumulation leading to cell death after several generations

1. Cardilin, T *et al. Cancer Chemother Pharmacol.* 2019;83(6):1159-73

DSB, double-strand break; SSB, single-strand break

Model incorporates redundant DNA repair pathways,

AACR American Association for Cancer Research 2023

PARP inhibitor only partially impairs DDR

Model can include innate DNA repair deficiency,

leading to synthetic lethality with PARP inhibition

1. Lord, CJ et al. Annu Rev Med. 2015;66:455-70

Model abstraction of synthetic lethality:

repair pathway to fall back on¹

combined with PARP inhibition, cells with

HRD, such as BRCA mutations, have no DSB

BRCAm, breast cancer mutation; DSB, double-strand break; HRD, homologous recombination DNA-repair deficiency; SSB, single-strand break

PARP repair inhibition pathway 1 Endogenous SSB damage SSB REPAIR generation pathway 2 PARP trapping during replication More conversion pathway 3 DSB damage DSB REPAIR pathway 4 BRCAm tumor volume Delayed cell death Cell death # Cells Core tumor growth model

Model includes ATR involvement in other repair

APRIL 14-19 • #AACR23

Endogenous generation ATR has a role in coordinating¹ DDR pathways PARP trapping cell cycle checkpoints during replication in response to SSB, DSB, and replication stress More conversion Model abstraction of ATR inhibitor mechanisms combine synergistically with PARP inhibition ATR checkpoint override Flag more damaged cells

1. Weber, AM et al. Pharmacol Ther. 2015 May; 149: 124-38

ATR, ataxia telangiectasia and Rad3-related; DSB, double-strand break; PARP, poly (ADP-ribose) polymerase; SSB, single-strand break

Calibrated drug model parameters are always fixed

Endogenous

generation

PARP trapping

ATR checkpoint

damaged cells

override

Delayed cell death

Flag more

during replication More conversion

across data sets

PARP trapping

inhibition of SSB / DSB repair

inhibition of SSB / DSB repair

two clearances of effect

PARP inhibitor

4 parameters

ATR inhibitor

3 parameters

ATR, ataxia telangiectasia and Rad3-related;

checkpoint override

clearance of effect

DSB, double-strand break; PARP, poly (ADP-ribose) polymerase; SSB, single-strand break

PARP repair inhibition

Model parameters characterising cancer cells are

Cell

time

APRIL 14-19 • #AACR23

specific to tumor models

PARP repair inhibition pathway 1 Endogenous SSB damage SSB REPAIR generation pathway 2 ATR repair inhibition PARP trapping during replication More conversion pathway 3 DSB damage DSB REPAIR pathway 4 Cell repair ATR checkpoint override deficiency Flag more damaged cells tumor volume Cell death Delayed cell death # Cells doublina

Core tumor growth model

- Endogenous SSB generation is calibrated and fixed for a tumor model
- Cell doubling time & repair deficiencies vary across data sets

ATR, ataxia telangiectasia and Rad3-related; DSB, double-strand break; PARP, poly (ADP-ribose) polymerase; SSB, single-strand break

Parameters for PARPi and ATRi calibrated with four

TGI data in HBCx-9 model (BRCAwt HRD+) (1/2)

AACR American Association for Cancer Research

APRIL 14-19 • #AACR23

- 2 data sets for rucaparib (PARPi) + gartisertib (ATRi)
- Example fit (lines) using a representative data set (markers)

1 wk on/1 wk off, 1 week on 1 week off; ATRi, ATR inhibitor; bid, twice daily; combo, combination; BRCAwt, BRCA wild-type; HBCx, human breast cancer xenograft; HRD, homologous recombination DNA-repair deficiency; PARPi, PARP inhibitor; qd, daily dosing; TGI, tumor growth inhibition

Parameters for PARPi and ATRi calibrated with four

TGI data in HBCx-9 model (BRCAwt HRD+) (2/2)

APRIL 14-19 • #AACR23

16

- 2 data sets for talazoparib (PARPi) + gartisertib (ATRi)
- Example fit (lines) using a representative data set (markers)

1qwk, once weekly; 2qwk, twice weekly; ATRi, ATR inhibitor; BRCAwt, BRCA wild-type; combo, combination; HBCx, human breast cancer xenograft; HRD, homologous recombination DNA-repair deficiency; PARPi, PARP inhibitor; qd, daily dosing; TGI, tumor growth inhibition

Model captures heterogeneity in responses due to

different genetic backgrounds

APRIL 14-19 • #AACR23

BRCAwt, BRCA wild-type; DSB, double-strand break; HBCx, human breast cancer xenograft, HRD, homologous recombination DNA-repair deficiency; SSB, single-strand break

Conclusion

APRIL 14-19 • #AACR23

Computational model captures

- Synthetic lethality induced by
 - Talazoparib or rucaparib PARP inhibition + innate DNA repair deficiencies
 - Combined inhibition with talazoparib or rucaparib (PARPi) + gartisertib (ATRi)
- Heterogeneity in tumor growth inhibition observed across multiple TNBC PDX models treated with talazoparib (PARPi) and gartisertib (ATRi)

Model is a framework that can help investigate

- Novel therapeutic strategies to address shortcomings with single agents (e.g., PARPi resistance)
- Clinical dosing regimen optimization in populations stratified by genetic background

Teamwork!

APRIL 14-19 • #AACR23

Physiomics PLC, Oxford, United Kingdom Claire C. Villette Frances Brightman Nathalie Dupuy

Christophe Chassagnole

the healthcare business of Merck KGaA, Darmstadt, Germany Astrid Zimmermann Florianne Lignet Nadia Terranova Samer El Bawab (at the time of the study) EMD Serono, Billerica, MA, USA Frank T. Zenke Jayaprakasam Bolleddula

Merck Specialties Pvt. Ltd., Bengaluru, India, an affiliate of Merck KGaA

Vasuprada Iyengar and Anupama Singh provided editorial assistance (funded by the healthcare business of Merck KGaA, Darmstadt, Germany)