PHYSIOMICS

rational therapeutics

Reducing animal experiments with the Virtual Tumour

Eric Fernandez, Frances Brightman, Hitesh Mistry, David Orrell and Christophe Chassagnole

Physiomics plc, The Oxford Science Park, Oxford, OX4 4GA, United Kingdom. Tel. +44 (0)1865 784980. Email: hmistry@physiomics-plc.com

Introduction

Preclinical testing of novel cancer treatments are enormously time and animal consuming, due to the large number of anti-cancer agents and the variety of tumour types. Typically, drugs are tested on human tumour tissue, which has been transplanted on mice, called a *xenograft*. When multiple drugs, combination schedules, sequences and doses are considered, the number of possibilities increases combinatorially. Usual laboratory methods will involve trial and error, requiring a large amount of animal testing.

We have developed an *in silico* model of a xenograft called "Virtual Tumour" to aid and accelerate the design of optimal drug schedules. This allows experimentalists to prioritise the most effective drug combinations and dramatically reduce the number of animal experiments performed for validation *in vivo*.

Eliminating Unnecessary Dosing Studies with Virtual Tumour

Physiomics' Virtual Tumour technology

Optimised doses, schedules and combinations Cheap & fast

The Virtual Tumour takes as input the following data sets:

OTHER BENEFITS:Cost savings associated with 3-month studyIncreased the chance of their candidate making it to market.
(1% reduced attrition estimated \$17m)

CASE ST	UDY 2:	Determined that the customer already had an optimal regimen						
PR	OJECT:	Optimise dosing and scheduling for a targeted agent combined with a DNA repair inhibitor (retrospective study)						
DUR	ATION:	Original project took 9 months to complete						
OUTC	OMES:	Demonstrated that use of Virtual Tumour provided the same answer with less animals, overall cost and much less elapsed time						
Scenario 1: Actual project outcome								
Start o	f xenog	rafts						
Scongrig 2.1	lsing Virt		End of xenografts					
Stenario 2. Osing virtuar ramour								
1	2	3	4	5	6	7	8	9
Time (months)								
TI	ME SAV	/ED: 6 mor	nths					
$\Delta N = \Delta A = C \Delta A = D = 10 \text{ miss} = 0 \text{ miss}$								

The Virtual Tumour simulations and predictions can be used to design and simulate new, rational experiments by ranking combinations and dosing schedules in specific tumour cell lines. This allows researchers to eliminate unnecessary and redundant experiments, thus reducing the amount of animals consumed in xenograft studies.

ANIMALS SAVED: 18 groups of 8 mice

OTHER BENEFITS: Cost savings associated with 6-month study Opportunity cost saving of deploying scientists on other projects

Conclusion

We demonstrated that the Virtual Tumour can reduce the number of animal experiments. In one of the case studies, this number could have been reduced by half. Furthermore, it can accelerate the discovery of optimal drug regimens. Since the Virtual Tumour simulates and predicts the outcomes of many classes of anti-cancer agents, this technology paves the way to dramatically replace and reduce animal studies in xenograft studies routinely done to demonstrate and optimise drug combinations.

References:

D. Orrell and E. Fernandez (2010), Using Predictive Mathematical Models to Optimise the Scheduling of Anti-Cancer Drugs, Innovations in Pharmaceutical Technology, p59-62.

www.physiomics-plc.com