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Altering an administration schedule can have a significant effect on drug
efficacy, especially when drugs are used in combination. Computer models
enable the simulation of thousands of possible schedules for combinations
of different drugs – providing a rationale for designing an appropriate
schedule, rather than relying on convention, a hunch or trial-and-error.
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In recent decades, the explosion of available
biological data, combined with a realisation that
biological systems can only be understood at the
system level rather than in terms of individual
proteins or genes, has meant that mathematical
models have become an indispensable part of the
drug development process. Models are now used by
drug developers in a number of different ways.
Pharmacokinetic (PK) models simulate the uptake of
the drug, and help determine optimal dosage levels.
Network analysis is used to trace the complex
interactions between proteins in biochemical
pathways. Pharmacodynamic (PD) models based on
differential equations simulate the various reactions
inside the cell, and determine how the network might
react to a particular drug therapy. 

More complicated models are also being developed,
such as large ‘multi-scale’ models, which are used to
simulate how a tumour grows and responds to
treatment. Apart from the effect of the drug on

biological pathways within individual cells, these models
must also take into account many other factors over
different scales, such as the diffusion of the drug and
nutrients into the tumour, angiogenesis, the necrotic
death of cells at the tumour core, and so on.

The ultimate aim of systems biology models in drug
development is to optimise drug treatment, improve the
success rate of drug trials, and potentially reduce the
need for animal experimentation. These goals require
that models should be predictive as well as descriptive.
However, while systems biology models have proved
useful for understanding how drugs affect tumours – an
important goal in itself – they suffer from two main
problems when it comes to making quantifiable
predictions (1).

One is that any mathematical model is only as good as
the data on which it is based. Biological data tends to be
very noisy and variable, and furthermore is only
available for certain molecular species, such as those
used as biomarkers, or measures such as tumour volume.
This means that there is enormous uncertainty about
not just model parameters, but the very structure of 
the model.

The second problem is that even incomplete models
are still highly complicated, with a large number of

unmeasurable parameters. Model parameters are
therefore underdetermined – the models can be

tuned to fit the available data, but are
often not very reliable for making
predictions. The same problem is found
in other fields, such as economic
forecasting, where simple models are
usually better than complex models for
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making predictions. In order to address these 
issues, and deliver tangible benefits to the drug
development process, Physiomics has adopted a two-
track approach, which we believe combines the
advantages of simple and complex models. The idea is
to first construct complex descriptive models of
networks, and then extract the relevant features of
these models to construct simpler agent-based models
of cell populations.

As an example of the first, descriptive modelling
approach, we have built a detailed model of the cell
cycle, including apoptosis. Because cancer cells are
rapidly proliferating, anti-cancer drugs usually target
proteins that are involved in the cell cycle or promote
apoptosis, so this model can be used to visualise and
explore the expected effect of the drug on cell growth,
division and death.

Such models are in themselves very useful for
drug developers: they can be used as a
demonstration tool to argue why one drug may
be more effective than another, or to determine
whether a drug is likely or not to work as
expected. However, they are not easy to calibrate
against data because they simulate the internal
dynamics of a range of proteins inside the cell,
which are extremely difficult to measure.
Detailed models of this type are therefore less
useful for making quantitative predictions about,
say, the effect of a drug on tumour growth.

For this type of question, our ‘virtual tumour’
model adopts an agent-based approach. Each
cell in the tumour is described by a separate
software agent, which uses a relatively simple set
of equations. The aim is to capture the overall
effect of the drug on a cell population, rather
than the precise processes within each cell. A
number of other simplifications are also made.
For example, because the propagating cells are
located in the periphery of the tumour, it is not
necessary to model the central core in detail.

The complexity of the model is thus
deliberately constrained so that it can be
parameterised with the available data. This
data includes PK data for the drug, biomarkers
showing the cell population response, and
xenograft growth measurements showing how
tumour growth is affected. Although the code
of each cell is relatively simple, the emergent
behaviour of the cell population can be
complicated and sometimes counter-intuitive.

SCHEDULES & COMBINATIONS

At Physiomics, one of our main interests is in
determining optimal schedules and combinations.
Empirical evidence shows that altering a schedule 
can have a significant effect on drug efficacy. 
This is especially the case when drugs are used 
in combination.

As an example, suppose that two drugs target cells are
in different stages of the cell cycle. Then the
effectiveness of the treatment can depend strongly on
the order in which the drugs are taken. This has been
demonstrated in numerous pre-clinical and some
clinical studies. One Phase II trial compared two
schedules involving the anti-cancer agents Cisplatin
and Taxol. In the first schedule, Cisplatin was given
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Figure 1: The effect
of the aurora kinase
inhibitor SNS-314
(shown by points) is
accurately simulated
in the virtual tumour
(lines). Shown are a
bi-weekly schedule
(blue), a weekly
schedule (green)
and control (red)

Figure 2: Changing
the sequence of
administration of
two drugs in
combination is
predicted to have a
dramatic effect on
tumour growth. The
sequential effect is
reproduced in the
virtual tumour (solid
lines). Green and
blue lines show the
two cases, red line
is control
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just after Taxol, with a 45 to 60 per cent overall
response rate. In the second schedule, a 12-hour delay
was introduced before administration of Cisplatin.
This led to an 80 per cent overall response rate and
lower toxicity (2).

The technique of dynamically modelling growing cell
populations is ideally suited to the analysis of such
timing-related effects. Indeed, a computational
approach is necessary because when multiple drugs,
doses and administration schedules are considered, the
number of possibilities explodes, so it is impossible to
test them all in the lab. With computer models, it is
possible to perform thousands of simulations if
necessary to find the best treatment regimen. These
tools therefore provide a means of designing a suitable
schedule, as opposed to the other options of relying on
convention, a hunch or trial-and-error.

As an example of this approach, Figure 1 shows
xenograft growth results for SNS-314 (Sunesis), an
Aurora kinase inhibitor (3). A bi-weekly (BIW)

schedule has a much greater effect on tumour 
volume than a weekly schedule (QW). The results 
of our simulations (solid lines) are in good 
agreement with the experimental data and capture the
schedule dependence.

The importance of combination scheduling is illustrated
by Figure 2, which shows a simulation of the
combination between SNS-314 and Docetaxel
(Taxotere, Sanofi-aventis). The results predict that just
altering the timing between the administration of
defined doses of the two drugs will have a significant
effect on the synergy between the two compounds. 
This sequencing effect was again observed in 
animal studies.

As another example, a major pharmaceutical company
recently provided us with data for two drugs
(compounds are undisclosed for confidentiality
reasons). The data consisted of xenograft growth 
and biomarker information for the drugs taken
individually. We were asked to predict xenograft
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growth when the two separate drugs were used in two
different combinations. Our predictions were then
compared against experimental data in a single-
blind test.

Figures 3 and 4 show the results for the two different
schedules. In Figure 3, the two drugs are administered
in parallel, while in Figure 4 they are taken
sequentially. The black lines show the average
xenograft growth, while the green lines show our

prediction, along with estimated upper and lower
bounds. The predictions are in good agreement with
the experimental data, and again accurately capture the
schedule dependency.

As mentioned above, an advantage of the computational
approach is that we can quickly simulate thousands of
possible schedules for combinations of different drugs.
This allows our partners to prioritise the most effective
drug combinations and the best schedules for validation
in vivo. Drugs we have worked with include cell-cycle
inhibitors and apoptotic agents. 

Another factor to be considered in scheduling is the
time of day at which the drugs are taken, which turns
out to have a major effect on both the efficacy and
toxicity of a range of drugs, including anti-cancer
agents. Chronotherapy studies have shown that
tolerability can vary in mice and rats by as much as 
10-fold for more than 35 anti-cancer drugs, including
standard-of-care treatments like 5-FU and Docetaxel
(4). Physiomics was a key member of the TEMPO
project, funded by the European Union, in which we
used our models to determine an optimal
chronotherapeutic schedule for the drug Seliciclib
(Cyclacel) (5).

To conclude, Physiomics has developed a set of system
biology models to aid with the drug discovery process.
The models combine disparate data, at the cell and
tumour level, into a consistent picture, and leverage
them to make testable predictions about tumour
response. Mathematical models may never replace
animal or human trials, but as in other branches of
science they promise to make experiments far more
efficient, effective and informative.
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Figure 3: The green
lines show our
prediction, along with
estimated upper and
lower bounds. The
black lines show the
actual average xenograft
growth, along with 5
and 95 percentile error
bounds. Schedules 
for the two drugs are
indicated in red and
blue on the bottom axis

Figure 4: As for Figure
3, but the drugs are
taken sequentially
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