PHYSICMICS

Optimal cancer chronotherapeutics schedules using a Systems Biology approach *Chronotherapeutics of Seliciclib*

Dr. Christophe Chassagnole, COO

Copyright Physiomics plc 2008

About Physiomics plc

Business

- Founded 2001, Oxford (UK) based, listed on the LSE (AIM) 2004
- We use computer modelling to understand and predict optimal cancer therapy.
- We accelerate the discovery process and reduce development risk.

Focus

- Cancer
- Models to simulate drug mechanism of action.
- Combination therapy and cell populations (SystemCell® Technology).

Collaborations:

- Eli Lilly
- Cyclacel Pharmaceuticals
- ValiRx Cronos Therapeutics
- Bayer Technology Services
- TEMPO (FP6 EU LifeSciHealth project)
- Institute of Life Science, Swansea University (HPC)

Chronotherapy for cancer drugs

- Chronotherapy consists of coordinating the timing of a medical treatment with patient's biological rhythms in order to optimise a drug's beneficial effects and reduce the undesired ones
- Tolerability varies in mice and rats by as much as 10-fold for >35 anticancer drugs (e.g. Oxaliplatin, 5-FU, Docetaxel,..) [1] ;2000 patients in Phase I, II & III trials
- Oxaliplatin was "rescued" using adjusted chronotherapeutic regimes [1]
- Phase III: Oxaliplatin-5FU combination chronotherapy with gender effect (2-Year survival male increase by 25%, but female decrease by 38%) [2]
- Much evidence for circadian regulation of the cell cycle in a variety of cell types [3] and this synchronisation may be lost in tumours [4].

^[1] Levi F. & Schibler U., Ann Rev Pharm Tox (2007); 47:593-528

^[2] Giacchetti et al. J Clin Oncol 2006, 24:3562-3569

^[3] Levi F., IEEE Eng Med Biol Mag. (2008); 27(1):17-9.

^[4] Iurisci I. et al., Cancer Res (2006); 10720-8.

Circadian rhythms

Source: http://en.wikipedia.org/wiki/Image:Biological_clock_human.PNG

Altered molecular clock in experimental tumors

- Dividing cells: targets for cancer therapeutics
- (no specificity for cancer cells)
- Cell cycle
 - deregulated in cancer cells
 - controlled by circadian timing system in normal cells

lurisci I. et al., Cancer Res (2006); 10720-8.

PHYSICMICS

TEMPO project

This research is supported by European Commission FP6 Specific Targeted Project TEMPO LSHG-CT-2006-037543

Copyright Physiomics plc 2008

Tempo (EU project, 8 partners) General Objectives

- Design 3 to 5 chronotherapeutic schedules based on patient profiling, identified by:
 - Set of 20 to 30 marker genes
 - Cell cycle, drug activity & pattern tolerability & efficacy
 - Addressing gene expression , proteins, signaling pathways, biochemistry
 - Mathematical models
- Application: patient-tailored cancer chronotherapeutics:
 - Seliciclib
 - Irinotecan
- Validation during the project:
 - Optimal schedules in cell cultures, animal models and development of micro-pumps for drug delivery
 - Human prerequisites and theoretical schedules

TEMPO (EU project) Chronotherapy Modelling

Therapeutic implications of the interactions between the circadian timing system, the cell division cycle and the pharmacology determinants

CEMPC

Snapshot of the Mammalian Cell Cycle Model

PHYS

Circadian Clock Model (molecular clock)

CircadianClock_1_02_00.xml 10 **Bmal mRNA** 8 6 amount Per mRNA 5 4 Cry mRNA з 2 0 ↓ 140 150 170 190 160 180 Time

"16 equations model"

Leloup et Goldbeter, PNAS 2003

Coupled Cell Cycle - Circadian Clock model

PHYS

Left: the circadian clock model (dotted orange rectangle) was coupled to the cell cycle model through the CyclinB-cdk1 mitotic switch (red dotted square) via its regulator Wee1. Top: Simulation showing the entrainment of some cell cycle species by the circadian clock.

Virtual FACS - SystemCell® Technology

HPC - SystemCell® Technology

www.physiomics-plc.com

BG - 9 June 2008

PK Modelling Approach

Chosen to use a mechanistic (PBPK) model provided by PK-Sim[™]:

- The model is preconstructed to include compartments for different tissues (useful for simulations of toxicity)
- Extrapolation from mouse to human is based on physiological mechanisms so may be more accurate.

Pharmacokinetic Modelling - First Sketch

PHYSIC

- We are currently using literature-derived and experimentally determined values for physicochemical properties of roscovitine
- No calibration has been performed for distribution (active transport) and organspecific metabolism (actually experimentally determined)
- Therefore, only the plasma concentration-time courses are used as an input to the pharmacodynamic model

Pharmacokinetic Modelling

PK-Sim vs Nutley et al. (2005)

100mg/kg IV dose published by: Nutley et al.; Mol Cancer Ther 2-5;4(1), 125-139

BG - 9 June 2008

Combined PK-PD Modelling

Single Cell Combined PK-PD Modelling

• When administered at early G1 double Seliciclib dosing barely effects cell cycle length. • When administered at late G1-G2, Seliciclib leads to sustained G2 arrest

Fernandez, E. et al, Abstract No 801, AACR Annual Meeting 2008, San Diego, CA

Multi-cell Combined PK-PD Modelling

19

Experimental Data

Seliciclib toxicity

was the lowest following dosing at ZT3 (lethal toxicity rate, 3.1%) compared with ZT11 (6.2%) or ZT19 (21.9%; P = 0.07, Fisher's exact test).

• Experimental data in mice (Iurisci et al. Cancer Res (2006) 10720-8) is broadly in line with our initial simulations.

- Simulate effects of Seliciclib on apoptosis
- Add regulation of apoptosis by circadian clock (balance cell division/cell death)
- Models for each organ calibrated with experimental data
- Adapting model for Human (clinical trial design)
- New dosing regimen and delivery protocols for cancer drugs

PHYSICMICS

Thank You

cchassagnole@physiomics-plc.com www.physiomics-plc.com

Copyright Physiomics plc 2008